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Electron channeling enhanced x-ray spectroscopy has been being widely used to 
determine ordered arrangement of component atoms in multinary inorganic or metallic 
crystals. Recent theoretical advancements in the modeling of characteristic x-ray emission 
by inelastic scattering of incident electrons under dynamical diffraction conditions has 
achieved remarkable progress1, and it has enabled scientists to analyze the experimental 
intensity of x-ray emission in precise detail. In this study, the ion configuration in 
magnesium aluminate spinel (MgO·nAl2O3) has been examined by measurements of 
characteristic x-ray emission as a function of incident electron beam direction at high 
angular resolution, a technique which we have termed HARECXS (high angular 
resolution electron channeling x-ray spectroscopy). This paper reports the results and 
emphasizes the applicability of HARECXS to partially disordered materials.  
 
Ion beam thinned TEM disk specimens of MgO·nAl2O3 with compositions n=1.0, 2.4 and 
3.0 were prepared for study after annealing at 1470 K for 2 days. HARECXS profiles were 
obtained in Philips EM-420T (at the ANL EM Center) operated at 120 kV with incident 
beam rocking between –4g and +4g (g=400) orientations. The experimental results were 
analyzed on the dynamical scattering formulation derived by Rossouw et al. 1 Fifteen 
reflections in the 400 systematic row were included in the calculations. 
 
Figs. 1a-c illustrate calculated HARECXS profiles of stoichiometric MgO·Al2O3 spinel 
crystals with various cation arrangements. Here the parameter k along the abscissa refers 
to the intersection of the Ewald sphere with the axis along 400 systematic reflections. 
k/g400=1 corresponds to the exact Bragg condition for 400 reflection. The intensities of 
Mg-K, Al-K and O-K x-rays drastically change with the incident beam direction, showing 
characteristic HARECXS profiles depend sensitively on the ion configuration in the 
crystal lattice. Figs. 2a-c show experimentally obtained HARECXS profiles of 
MgO·nAl2O3 with n=1.0, 2.4 and 3.0. The profile (2a) for n=1.0 looks analogous to (1a), 
indicating that the stoichiometric compound has a tendency to form the normal structure, 
where Mg2+ and Al3+ ions occupy preferentially the tetrahedral (IV) and the octahedral 
(VI) sites, respectively. In contrast, the profiles (2b) and (2c) for non-stoichiometric 
compounds exhibit strikingly different features. The Mg-K intensity remains almost 
unchanged over the range –2<k/g400<2 in (2b), while it is enhanced for -1<k/g400<1 in (2c) 
in an opposite sense to (2a). This suggests that Mg2+ ions are displaced to the VI sites with 
deviation from the stoichiometric composition. The simulations given in Figs. 3a-c 
describe quite well the experimental profiles of Figs. 2a-c, and therefore the ion 
configurations are consistently determined. These results are also given in terms of 
occupation probabilities on the IV sites in Figs. 2a-c. Here we can see that, in the 
stoichiometric compound, partial disordering takes place so that 60 % of Mg2+ ions are 
located in the IV sites while the remaining are on the VI sites. The tendency to form the 
normal structure disappears in the non-stoichiometric compounds with n=2.4 and 3.0, as 



the occupation probability of Mg2+ on the IV sites is about 1/3 or less. HARECXS has, 
thus, shown itself to be very useful for quantitative determination of atom configuration in 
crystalline materials as well as in the study of radiation-induced displacements in spinel2, 
the results from which are reported in a separate paper3.  
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Figure 1. Calculated HARECXS profiles of stoichiometric MgO·Al2O3 with normal (1a), 
random (1b) and inverse spinel structures. 

Figure 2. Experimental profiles of MgO·nAl2O3 with n=1.0 (2a), 2.4 (2b) and 3.0 (2c). 
Figure 3. Simulation of HARECXS profiles for n=1.0 (3a), 2.4 (3b) and 3.0 (3c). The 

values inserted are the occupation probabilities on the IV sites. 
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